3. Hausübung zu Grundlagen der Elektrotechnik

Mo. 30.11.2020

Abgabe bis spätestens Mo. 07.12.2020 um 18 Uhr (bitte an meine FHV Email Adresse accesses=2856@fhv.at senden)

NAME:		

Aufgabe 1 (3 Pkt.)

Eine Spule mit dem Wicklungswiderstand R_1 = 60 Ω und der Induktivität L_1 = 100 mH ist mit einer zweiten Spule mit dem Wicklungswiderstand R_2 = 120 Ω und der Induktivität L_2 = 400 mH in Reihe geschaltet. Berechnen Sie für die Frequenz f = 50 Hz

- a) den Scheinwiderstand (Betrag der Impedanz) der Reihenschaltung und
- b) den Leistungsfaktor $\cos \phi$.

Aufgabe 2 (3 Pkt.)

Ein veränderbarer Widerstand R liegt parallel zu einem Kondensator $C = 0,1~\mu F$. Die Schaltung liegt an einer sinusförmigen Wechselspannung U = 10~V, f = 300~Hz. Der Widerstand soll so eingestellt werden, dass die Phasenverschiebung zwischen Gesamtstrom und Spannung 60° beträgt.

Bei welchem Gesamtstrom durch die Parallelschaltung wird die geforderte Phasenverschiebung erreicht?

Aufgabe 3 (3 Pkt.)

Zwei induktive Verbraucher werden an der Netzspannung U = 230 V, f = 50 Hz betrieben.

- Verbraucher 1: $P_1 = 1.8 \text{ kW}$, $\cos \phi_1 = 0.6$
- Verbraucher 2: $P_2 = 1.2 \text{ kW}$, $Q_2 = 1.6 \text{ kvar}$
- a) Welche Blindleistung entnimmt Verbraucher 1 aus dem Netz?
- b) Wie groß sind Wirk- und Blindleistung, die beide Verbraucher zusammen aus dem Netz beziehen?