Prüfung aus "Grundlagen der Elektrotechnik" /2 Studiengang Elektrotechnik dual Mo, 21. 12. 2020, 14:00-17:15 Online in MS Teams

Name:						
Kennnnumn	ner:_					
Punktetabe	ile					
Aufgabe	1	2	3	4	ILIAS- Theorie	SUM
maximale Punktezahl	4	7	7	7	10	35
Punktezahl erreicht						
Hinweis:						
Berechnunge nachvollziehb keine Punkte	oar ist	t, wie	e das	Erge		
Lösen Sie die Antworten: Ri keine Punkte	ichtig	ge, al	ber n	icht z	zur Frage/A	ufgabe
Beantworten zusätzliches, g			_			
Bestätigung	j:					

fremder Hilfe oder unerlaubter Hilfsmittel bzw. Unterlagen generiert zu haben. Es ist mir bewusst, dass in einem solchen Fall It. aktuelle Studien- und Prüfungsordnung §11 Abs. (1) oder (2) die Prüfungsarbeit nicht beurteilt wird, der Prüfungsantritt aber zur Gesamtzahl der möglichen Wiederholungen angerechnet wird.

Hiermit bestätige ich, die Prüfungsergebnisse eigenständig ohne Zuhilfenahme von

Unterso	hrift		

Viel Erfolg!

Prüfung aus "Grundlagen der Elektrotechnik" /2 Studiengang Elektrotechnik dual Mo, 21. 12. 2020, 14:00-17:15 Online in MS Teams

Aufgabe 1: Diskussion zu elektrotechnischen Themen

Überlegen und begründen Sie kurz, ob folgende Aussage richtig oder falsch ist! (Achtung: Punkte werden durch die Begründung vergeben, d.h. ein Einfaches wahr/falsch ist zu wenig!)

Beispielaussage: "Der Gleichrichtwert ist immer größer oder gleich dem Gleichwert"

Beispielantwort: "Stimmt. Bei rein positiven Funktionen sind beide gleich, negative Anteil reduzieren den Gleichwert, nicht aber den Gleichrichtwert."

1a) Es	gibt mehrere Methoden, ein Plasma zu erzeugen.
	Wahr, weil:
	Falsch, weil:
1b) In	Transformatoren werden hauptsächlich hartmagnetische Materialien verwendet.
	Wahr, weil:
	Falsch, weil:
1c) Fe	rroelektrika haben einen viel höheren Leitwert als Dielektrika. Dadurch ist deren Einsatz nur
bei sel	nr geringen Spannungen möglich.
	Wahr, weil:
	Falsch, weil:
1d) W	enn auf einem Gerät das "CE" - Kennzeichen drauf ist, kann ich mich darauf verlassen, dass
alle vo	rgeschriebenen Prüfungen durchgeführt worden sind!
	Wahr, weil:
	Falsch, weil:
	egen der vielen Vorteile (welche?) wird in modernen Geräten hauptsächlich die "surface ed" Technologie verwendet.
	Wahr, weil:
	Falsch, weil:
1f) Ein	realer Kondensator wirkt für sehr hohe Frequenzen wie ein Widerstand!
	Wahr, weil:
	Falsch, weil:

Aufgabe 2: Felder Berechnungsbeispiel

Durch den Skin – Effekt wird in einem kreisrunden Leiter (Radius R) der Strom "nach außen" gedrängt, d.h. die Stromdichte nimmt von außen nach innen exponentiell ab. Der kennzeichnende Faktor der Abnahme ist die "Eindringtiefe" δ . Es gilt für den Betragsverlauf der

Stromdichte: $J(r)=J(R)\cdot e^{-rac{R-r}{\delta}}$, d.h. ganz außen ist der Betrag der Stromdichte J(R), im Abstand δ vom Rand aus gesehen ist diese bereits um den Fatkor e^{-1} =0,37 kleiner.

a)	Skizzieren Sie den Verlauf der Stromdichte als Kurve von -R bis +R! Wie groß ist der Wert
	der Stromdichte im Mittelpunkt des Leiters?

$$J(0) =$$

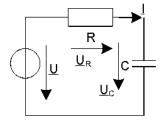
b) In erster Näherung kann man die Stromdichte zur einfacheren Berechnung auch quadratisch interpolieren als: $J(r) = J(0) + c \cdot r^2$. Berechnen Sie die Konstante c und ermitteln Sie allgemein die Gesamtstromstärke I.

c) Berechnen Sie die minimale und maximale Stromdichte im Leiter, wenn gilt: I = 10kA, R = 2cm.

Prüfen Sie durch Abschätzung der Grenzen (Rückrechnen der Stromstärke mit konstanter Stromdichte Jmax bzw. Jmin für gesamten Leiter)

Prüfung aus "Grundlagen der Elektrotechnik" /2 Studiengang Elektrotechnik dual Mo, 21. 12. 2020, 14:00-17:15 Online in MS Teams

Aufgabe 3: AC Analyse


Eine Leuchtstoffröhre mit Vorschaltdrossel (Spule) nimmt am Netz (230 V, 50 Hz) bei I = 0,58 A die Wirkleistung von 60 W auf.

0,5	0,58 A die Wirkleistung von 60 W auf.					
a)	Skizzieren Sie das Ersatzschaltbild der Anordnung.					
b)	Ermitteln Sie die fehlenden Leistungen und zeichnen Sie das Leistungsdreieck! Welchen Leistungsfaktor hat die Gesamtschaltung?					
	<u>S</u> =	PF :	=			
c)	Ermitteln Sie die Bauteilwerte R und L im Ersatzschaltbild!					
	R =	L =				
d)		ten die Verluste in den Ansc ändige Blindleistungskomp				
	P-Reduktion (%) =					
e)	Berechnen Sie die notwendige Kapazität (Parallelkompensation) für eine Verbesserung des Leistungsfaktor auf 0,95. Wie groß ist der kompensierte Strom um wie viel Prozent sind die Verluste in den Anschlussleitungen durch C gesunke					
	C =	Icomp =	P-Reduktion (%) =			
	Zeichnen Sie den komper ein!	nsierten Leistungszustand ek	oenfalls in das Leistungsdreieck			

Aufgabe 4: Frequenzabhängigkeit

Ein Signal (\underline{U}) enthalte neben der eigentlichen Signalfrequenz (500Hz) Störungen, und zwar bei den Frequenzen f1 = 80kHz und f2 = 160kHz. Um die Störungen zu verringern, wird ein R-C Tiefpassfilter verwendet:

- a) Ermitteln Sie Z aus R und C! Skizzieren Sie die Ortskurve.
- b) Dimensionieren Sie das Filter so, dass die Störfrequenzen um etwa -40dB (oder mehr) unterdrückt werden, die Signalfrequenz davon aber möglichst unbeeinflusst bleibt. C sei mit 10nF vorgegeben. Runden Sie R.

R =

c) Berechnen Sie den Frequenzgang von \underline{U} c/ \underline{U} unter Verwendung von τ =RC. Berechnen Sie auch dessen Betrags- und Winkelverlauf Uc/U. Berechnen und skizzieren Sie das Bode - Diagramm.

 $\underline{\mathsf{U}}\mathsf{c}/\underline{\mathsf{U}} = =$

d) Wie groß sind die Dämpfungen A (in dB) der beiden Störfrequenzen? Wie stark wird durch die Filterschaltung die Signalfrequenz gedämpft?

 A_{f1} = A_{f2} = A_{sig} =