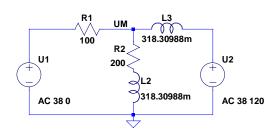

Grundlagen der Elektrotechnik – Prüfung 25.06.2018

Name			beigef Erlaub	ügte, le	ere Papi rlagen: \$	ier.	das Anga zeug, Re		und da	S	
Aufgabe	1	2	3	4	5	6	7	8	9	10	Gesamt
Punkte	10	10	10	10	10	10	10	10	10	10	100
Erreicht											

Achten Sie auf die Form Ihrer Arbeit! Alle Ergebnisse sind durch doppeltes Unterstreichen eindeutig zu kennzeichnen.


Aufgabe 1 Resonanz

Nebenstehende Schaltung besteht aus einem Widerstand $R1 = 1m\Omega$, einer Induktivität L1 = 10nH, einem Kondensator C1 (noch zu bestimmen) und einer sinusförmigen Spannungsquelle $U = 3V \angle 0^{\circ}$ bei f = 5MHz.

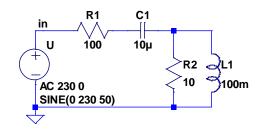
- Kann in nebenstehender Schaltung Resonanz auftreten? Begründung? (2)
- Bestimmen Sie den Wert für C1 so, dass Resonanz bei $f_{res} = 5MHz$ auftritt. (5)
- Wie groß ist in diesem Fall der Strom I, den die Quelle U liefert? (2)
- Ist der Strom, den die Quelle liefert, im Resonanzfall minimal oder maximal? (1)

Aufgabe 2 Wechselstromrechnung

Gegeben ist nebenstehende Schaltung.

Passive Zweipole:

$$R1 = 100\Omega$$
, $R2 = 200\Omega$, $L2 = L3 = 318.30988$ mH


Sinusförmige Spannungsquellen:

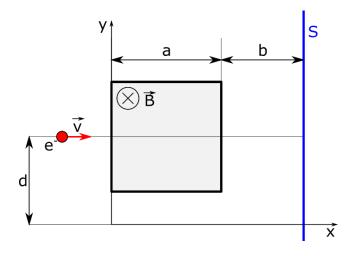
$$U1 = 38V$$
, $\varphi 1=0^{\circ}$, $U2 = 38V$, $\varphi 2 = 120^{\circ}$, $f1 = f2 = 50$ Hz

Zeichnen Sie Strom- und Spannungspfeile ein und berechnen Sie die folgenden Größen:

- 1. $I_{L2}(4)$
- 2. $I_{R1}(3)$
- 3. $U_{L3}(3)$

Aufgabe 3 Leistung im Wechselstromkreis

Vier Verbraucher sind an Netzspannung (U1 = 230V, f = 50Hz) angeschlossen.


- $R1 = 100\Omega$
- $R2 = 10\Omega$
- L1 = 100 mH
- $C1 = 10 \mu F$

Der Spannungsverlauf der Netzspannung ist

$$u1 = \sqrt{2} \cdot 230V \cdot \cos\left(2\pi 50 \frac{1}{s} \cdot t + 0\right)$$

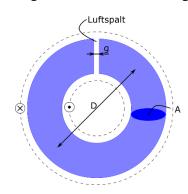
- Zeichnen Sie einen Bezugspfeil für den Strom durch R1 ein und berechnen Sie diesen Strom I_{R1}. (3)
- Skizzieren Sie ein Zeigerdiagramm für \underline{U} und \underline{I}_{R1} (geeignete Maßstab wählen!) (1)
- Berechnen Sie die Leistung, die die Quelle U1 abgibt:
 - Scheinleistung, Wirkleistung, Blindleistung (2)
 - Augenblickleistungen zu den Zeitpunkten t1=2ms und t2 = 7ms (2)
 - o Leistungsfaktor (1)
- Verhält sich das Netzwerk induktiv oder kapazitiv? (mit Begründung!) (1)

Aufgabe 4 Kraft im Magnetfeld

Ein Elektron tritt mit einer Geschwindigkeit v in ein homogenes Magnetfeld B (Richtung in die Zeichenebene) ein. Der Eintrittspunkt befindet sich im Punkt (0,d).

$$\bullet \quad v = 2 \cdot 10^7 \frac{m}{s}$$

•
$$B = 3mT$$


•
$$d = 8mm$$

Der Bereich des Magnetfelds ist quadratisch mit einer Kantenlänge a = 10mm. In einem Abstand b=7mm befindet sich ein Schirm S, auf den die Elektronen auftreffen.

- Wie groß ist die Kraft, die auf das Elektron wirkt, wenn es in das Magnetfeld eintritt? Betrag und Richtung! (3)
- Welche Bahn beschreibt, das Elektron im Magnetfeld? Wie groß ist der Radius dieser Bahn?
- Berechnen Sie die Koordinate (x,y) des Punktes, in dem das Elektron auf den Schirm trifft. (4)

Daten zum Elektron: Ladung:
$$q_e=-1.602\cdot 10^{-19}$$
 C, Masse: $m_e=9.11\cdot 10^{-31}kg$ Zentrifugalkraft: $\overrightarrow{F_Z}=\frac{m\cdot v^2}{r}$

Aufgabe 5 Induktivität - magnetischer Kreis

Es soll mithilfe eines ringförmigen Eisenkerns eine Induktivität von $L=1 \mathrm{mH}$ aufgebaut werden

Der Kern besitzt einen mittleren Durchmesser D=1cm. Der Querschnitt A = 0.14cm². Die relative Permeabilität des Kernmaterials beträgt μ_r = 1000. Die Toleranz der Permeabilität beträgt ±20%. Es wird in den Kern ein kurzer Luftspalt von g=0.5mm eingefräst.

- Zeichnen Sie einen magnetischen Kreis dieser Anordnung! (2)
- Berechnen Sie die Anzahl der benötigten Windungen N um die Induktivität L zu erreichen! (3)
- Wie groß ist die maximale Induktivität L_{max} aufgrund der Toleranz von μ_r ? (2)
- Wie groß ist, bei nominalen μ_r und einem Strom I = 100mA, die Flussdichte B_L im Luftspalt? (3)

Hinweise: Es kann ohne Luftspaltaufweitung gerechnet werden.

$$L = N^{2} \Lambda$$

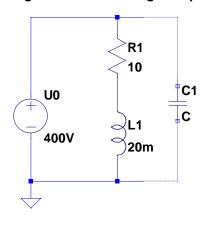
$$\Lambda = \mu_{0} \mu_{r} \frac{A}{l}$$

$$\mu_{0} = 0.4 \pi \cdot 10^{-6} \frac{Vs}{Am}$$

Aufgabe 6 Leistung im Wechselstromkreis

- Was ist Wirkleistung, Scheinleistung und Blindleistung (mit Einheit) bzw. der Leistungsfaktor? (5)
- Wie verhalten sich S, P und Q bei einem ohmschen Widerstand / einer Induktivität / einer Kapazität? (5)

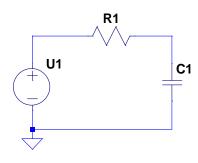
Aufgabe 7 Kondensator als Energiespeicher


Gespeicherte Energie

- Leiten Sie den Zusammenhang zwischen C, uC und der im elektrischen Feld gespeicherten Energie Ee her! (4)
- Vergleichen Sie den Energieinhalt zweier Kondensatoren (2):
 - \circ C1 = 10 μ F bei u1 = 400V
 - \circ C2 = 100 μ F bei u2 = 40V

Elektrolytkondensator (4)

- Skizzieren Sie den Aufbau eines Elektrolytkondensators.
- Welcher Teil dient als Anode (+ Pol), Dielektrikum (Isolator) und Kathode (-Pol)?
- Was passiert wenn ein Elko mit falscher Polung betrieben wird?


Aufgabe 8 Blindleistungskompensation

Die Spannungsquelle $\underline{U0}$ (400V, 50Hz) ist an der dargestellten induktiven Last R1, L1 angeschlossen. R1=10 Ω , L1=20mH.

- Berechnen Sie den Leistungsfaktor λ1 ohne Blindleistungskompensation (ohne C1). (3)
- Legen Sie danach den Kondensator C1 f
 ür einen verbesserten Leistungsfaktor
 λ2=0.95 aus. (5)
- Um wie viele Prozent sinkt der Effektivwert des Stroms <u>10</u> (den die Quelle liefert) durch die Blindleistungskompensation? (2)

Aufgabe 9 Tiefpass

Nebenstehende RC Schaltung soll analysiert werden.

- $R1 = 1k\Omega$
- C1 = 470 nF

Differentialgleichung: Der Kondensator C1 ist bei t=0 ungeladen. Es wird eine Spannung U1 = 5V angelegt.

- Leiten Sie die Kondensatorladekurve her! (3)
- Was versteht man unter Zeitkonstante τ ? (1)
- Auf welchen Wert liegt die Spannung u_{C1} nach 3τ bzw. 5τ ? (1)

Frequenzbetrachtung:

- Skizzieren Sie das Bode-Diagramm von $\underline{H} = \frac{UC1}{U1}!$ (2)
- Wie ist der Zusammenhang zwischen der Zeitkonstante τ und der Grenzfrequenz f_q ? (1)
- Schätzen Sie den Betrag der Ausgangsspannung UC1 für zwei verschiedene sinusförmige Eingangsspannungen ab: (2)

$$\begin{array}{ll} \circ & U_{1a} = 1V, f_{1a} = \frac{f_g}{100} \\ \circ & U_{1b} = 1V, f_{1b} = f_g \cdot 100 \end{array}$$

Aufgabe 10 Toleranzen Widersta	n	1	1	(((((((ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	۱	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	۱	١	ì	١	1	•	ŕ	ŕ	ŕ		ŕ	ŕ	ŕ	í	í	í	1	ŕ	ŕ	ŕ	ŕ	ŕ	ŕ	ŕ	•	•	•	•	•	•	•	١	•	•	í	í	í	1	ì	ì	i	ı	١		ì			į	4	Ĺ	l	1	í	٠			9	٠	ľ	ı	•	è		3	ć	í	(ı	1	Č	ĺ	(i	i	l	I	ı	١	١	١	۱	ı	ı	Į	١	١	١	١							ı	١	า	r	ı	١	١	٩	3	•	Ē	É
--------------------------------	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	--	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---

YPE / SIZE	TCR	TOLERANCE	RESISTANCE
	50 46	± 1 %	10 Ω to 4.99 MΩ
	± 50 ppm/K	± 0.5 %	10 Ω to 221 kΩ
MCS 0402	± 25 ppm/K	± 0.5 %	10 Ω to 221 kΩ
	Jumper, I _{max.} = 0.63 A	\leq 20 m Ω	0 Ω
	50 1/	± 1 %	1 Ω to 10 MΩ
MCT 0603	± 50 ppm/K	± 0.5 %	10 Ω to 511 kΩ
IVICT UOUS	± 25 ppm/K	± 0.5 %	10 Ω to 511 kΩ
	Jumper, I _{max.} = 1 A	\leq 20 m Ω	0 Ω
	. 50 //	± 1 %	1 Ω to 10 MΩ
MCU 0805	± 50 ppm/K	± 0.5 %	10 Ω to 1.5 MΩ
WCU 0805	± 25 ppm/K	± 0.5 %	10 Ω to 1.5 MΩ
	Jumper, I _{max.} = 1.5 A	\leq 20 m Ω	0 Ω
	± 50 ppm/K	± 1 %	1 Ω to 2 M Ω
MCA 1206	± 50 ppm/K	± 0.5 %	10 Ω to 2 MΩ
WCA 1206	± 25 ppm/K	± 0.5 %	10 Ω to 2 M Ω
	Jumper, I _{max.} = 2 A	\leq 20 m Ω	0 Ω
		MCS 0402	10 Ω to 4.99 MΩ
		MCT 0603	1 Ω to 10 M Ω
		MCU 0805	1 Ω to 10 MΩ
Max. resistance chan ∆R/R after:	ge at P ₇₀ for resistance range,	MCA 1206	1 Ω to 2 MΩ
paring arror.	_	1000 h	≤ 0.25 %
		8000 h	≤ 0.5 %
		225 000 h	≤ 1.5 %

Ein SMD Widerstand der Bauform 0805 hat bei $T=25\,^{\circ}\text{C}$ einen Wert von 47Ω . Er hat eine Initialtoleranz von $\pm 1\%$ und wird bei einer Leistung P70 für eine Zeitdauer von 8000h betrieben. Bei P70 ist die Temperatur des Widerstands $70\,^{\circ}\text{C}$

 Was ist der dann zu erwartende Minimalbzw. Maximalwiderstand aufgrund Temperaturdrift und Alterung? (5)

Zwei dieser Widerstände sind in einem Spannungsteiler in Verwendung.

• Wie groß ist der maximale relative Fehler der Spannung UR2 aufgrund aller gegebenen Toleranz von R1 und R2? (5)