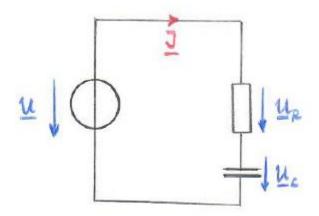

7. AC Technik (6 LE)

Aufgabe 7.1

Eine Spule mit der Induktivität L = 175 mH ist mit einem ohmschen Widerstand von R = 40 Ω in Reihe geschaltet. Die Anordnung liegt an einer sinusförmigen Wechselspannung mit dem Effektivwert U = 230 V und der Frequenz f = 50 Hz.

- a) Wie groß ist der Effektivwert I des fließenden Stromes?
- b) Welcher Phasenverschiebungswinkel φ besteht zwischen der Spannung U und dem Strom I?

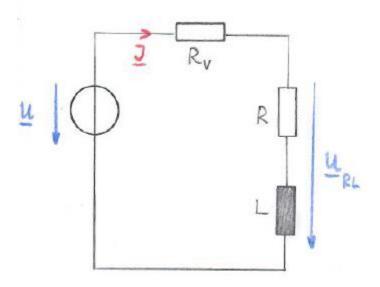


[Ergebnis: a) I = 3,38 A, b) $\varphi = 54,0^{\circ}$]

Aufgabe 7.2

Ein ohmscher Widerstand R = 750 Ω ist mit einem Kondensator der Kapazität C = 250 nF in Reihe geschaltet. Die Anordnung wird von einem sinusförmigen Strom mit dem Betrag (Effektivwert) I = 50 mA und der Frequenz f = 800 Hz durchflossen.

- a) Wie groß sind die Teilspannungen U_R und U_C sowie die Gesamtspannung U?
- b) Welcher Phasenverschiebungswinkel φ besteht zwischen den Spannungen U_C und U?

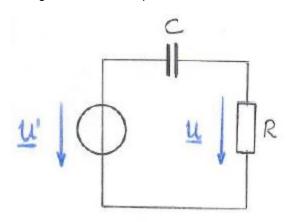


[Ergebnis: a) $U_R = 37.5 \text{ V}$, $U_C = 39.8 \text{ V}$, U = 54.7 V, b) $\varphi = 43.3^\circ$]

Aufgabe 7.3

Eine Spule mit der Induktivität L = 50 mH liegt in Reihe mit einem ohmschen Widerstand von R = 150 Ω . Die Anordnung soll über einen ohmschen Vorschaltwiderstand R_V mit einer Wechselspannungsquelle verbunden werden. Sie liefert eine Spannung von U = 48 V der Frequenz f = 800 Hz.

Welchen Wert muss der Widerstand R_V haben, damit die an der Reihenschaltung von R und L liegende Spannung U_{RL} = 30 V wird?

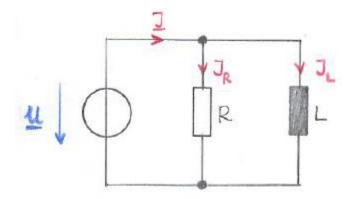


[Ergebnis: $R_V = 244 \Omega$]

Aufgabe 7.4

Ein elektrisches Heizgerät für die Spannung U = 230 V besitzt den Widerstand (Wirkwiderstand) R = 53 Ω . Das Gerät soll über einen Kondensator an eine Wechselspannung von U' = 400 V der Frequenz f = 50 Hz gelegt werden.

Wie groß muss die Kapazität C des Kondensators sein, damit das Heizgerät an U = 230 V liegt?

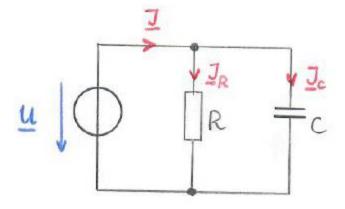


[Ergebnis: $C = 42,25 \mu F$]

Aufgabe 7.5

Ein ohmscher Widerstand von R = 100 Ω und eine Spule mit der Induktivität L = 72 mH liegen parallel an einer Spannungsquelle, die eine Spannung von U = 36 V der Frequenz f = 400 Hz liefert.

- a) Es sind die Teilströme I_R und I_L sowie der Gesamtstrom I zu bestimmen.
- b) Um welchen Phasenverschiebungswinkel φ eilt der Strom I der Spannung U nach?



[Ergebnis: a) $I_R = 360 \text{ mA}$, $I_L = 199 \text{ mA}$, I = 411 mA, b) $\varphi = 28.9^\circ$]

Aufgabe 7.6

Ein ohmscher Widerstand von R = 100 Ω und ein Kondensator mit der Kapazität C = 2 μ F liegen parallel an einer Spannungsquelle, die eine Spannung von U = 36 V der Frequenz f = 400 Hz liefert.

- a) Es sind die Teilströme I_R und I_C sowie der Gesamtstrom I zu bestimmen.
- b) Um welchen Phasenverschiebungswinkel φ eilt der Strom I der Spannung U voraus?

[Ergebnis: a) $I_R = 360 \text{ mA}$, $I_C = 181 \text{ mA}$, I = 403 mA, b) $\varphi = 26,7^\circ$]

Aufgabe 7.7

Ein Verbraucher nimmt bei der Spannung U = 230 V den Strom I = 5,0 A auf. Dabei eilt die Spannung dem Strom um den Phasenverschiebungswinkel φ = 40° vor.

Wie groß sind die Scheinleistung S, die Wirkleistung P, die Blindleistung Q und der Leistungsfaktor $\cos \phi$ des Verbrauchers?

[Ergebnis: S = 1.150 VA, P = 881 W, Q = 739 VAr, $\cos \varphi = 0.766$]

Aufgabe 7.8

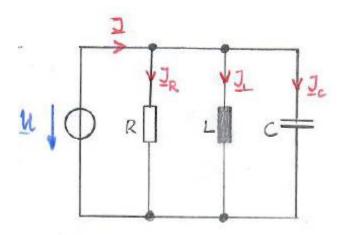
Ein Wechselstrommotor liegt an einer Spannung von U = 230 V der Frequenz f = 50 Hz. Er nimmt dabei einen Strom von I = 13,5 A auf. Der Leistungsfaktor des Motors beträgt $\cos \varphi = 0.85$.

- a) Wie groß sind die Scheinleistung S, die Wirkleistung P und die Blindleistung Q?
- b) Welche Leistungsfaktorverbesserung ($\cos \varphi$) lässt sich durch Parallelschalten eines Kondensators mit der Kapazität C = 20 μ F erzielen?

[Ergebnis: S = 3.105 VA, P = 2.620 W, Q = 1.636 VAr, $\cos \varphi' = 0.90$]

Aufgabe 7.9

Ein Wechselstrommotor der für eine Spannung U = 230 V und eine Frequenz f = 50 Hz ausgelegt ist, nimmt eine Wirkleistung von P = 1,18 kW auf. Der Leistungsfaktor des Motors ist mit cos ϕ = 0,8 angegeben.


- a) Wie groß sind die Scheinleistung S und die Blindleistung Q?
- b) Welche Kapazität müsste der Kondensator haben, um die Blindleistung komplett zu kompensieren?

[Ergebnis: S = 1.475 VA, Q = 885 VAr, $C = 53.3 \mu\text{F}$]

Aufgabe 7.10

Die folgende abgebildete Schaltung mit R = 1 k Ω , L = 100 mH und C = 820 nF liegt an einer Wechselspannungsquelle mit U = 50 V, f = 400 Hz.

Es sind der Gesamtleitwert Y, der Phasenverschiebungswinkel ϕ , die Teilströme I_R , I_L , I_C und der Gesamtstrom I zu bestimmen.

[Ergebnis: Y = 2,16 mS, $\varphi = 65,2^{\circ}$, $I_R = 50$ mA, $I_L = 199$ mA, $I_C = 103$ mA, I = 108 mA]