
statistics — Mathematical statistics functions
New in version 3.4.

Source code: Lib/statistics.py

This module provides functions for calculating mathematical statistics of numeric (Real-valued) data.

The module is not intended to be a competitor to third-party libraries such as NumPy, SciPy, or proprietary full-featured statistics
packages aimed at professional statisticians such as Minitab, SAS and Matlab. It is aimed at the level of graphing and scientific cal-
culators.

Unless explicitly noted, these functions support int, float, Decimal and Fraction. Behaviour with other types (whether in the
numeric tower or not) is currently unsupported. Collections with a mix of types are also undefined and implementation-dependent.
If your input data consists of mixed types, you may be able to use map() to ensure a consistent result, for example: map(float,
input_data).

Some datasets use NaN (not a number) values to represent missing data. Since NaNs have unusual comparison semantics, they
cause surprising or undefined behaviors in the statistics functions that sort data or that count occurrences. The functions affected
are median(), median_low(), median_high(), median_grouped(), mode(), multimode(), and quantiles(). The NaN values
should be stripped before calling these functions:

Averages and measures of central location

These functions calculate an average or typical value from a population or sample.

mean() Arithmetic mean (“average”) of data.

fmean() Fast, floating point arithmetic mean, with optional weighting.

geometric_mean() Geometric mean of data.

harmonic_mean() Harmonic mean of data.

median() Median (middle value) of data.

median_low() Low median of data.

median_high() High median of data.

median_grouped() Median, or 50th percentile, of grouped data.

mode() Single mode (most common value) of discrete or nominal data.

multimode() List of modes (most common values) of discrete or nominal data.

quantiles() Divide data into intervals with equal probability.

Measures of spread

These functions calculate a measure of how much the population or sample tends to deviate from the typical or average values.

pstdev() Population standard deviation of data.

pvariance() Population variance of data.

stdev() Sample standard deviation of data.

variance() Sample variance of data.

Statistics for relations between two inputs

These functions calculate statistics regarding relations between two inputs.

covariance() Sample covariance for two variables.

correlation() Pearson and Spearman’s correlation coefficients.

linear_regression() Slope and intercept for simple linear regression.

Function details

Note: The functions do not require the data given to them to be sorted. However, for reading convenience, most of the examples
show sorted sequences.

statistics.mean(data)
Return the sample arithmetic mean of data which can be a sequence or iterable.

The arithmetic mean is the sum of the data divided by the number of data points. It is commonly called “the average”, al-
though it is only one of many different mathematical averages. It is a measure of the central location of the data.

If data is empty, StatisticsError will be raised.

Some examples of use:

Note: The mean is strongly affected by outliers and is not necessarily a typical example of the data points. For a more ro-
bust, although less efficient, measure of central tendency, see median().

The sample mean gives an unbiased estimate of the true population mean, so that when taken on average over all the pos-
sible samples, mean(sample) converges on the true mean of the entire population. If data represents the entire population
rather than a sample, then mean(data) is equivalent to calculating the true population mean μ.

statistics.fmean(data, weights=None)
Convert data to floats and compute the arithmetic mean.

This runs faster than the mean() function and it always returns a float. The data may be a sequence or iterable. If the input
dataset is empty, raises a StatisticsError.

Optional weighting is supported. For example, a professor assigns a grade for a course by weighting quizzes at 20%, home-
work at 20%, a midterm exam at 30%, and a final exam at 30%:

If weights is supplied, it must be the same length as the data or a ValueError will be raised.

New in version 3.8.

Changed in version 3.11: Added support for weights.

statistics.geometric_mean(data)
Convert data to floats and compute the geometric mean.

The geometric mean indicates the central tendency or typical value of the data using the product of the values (as opposed to
the arithmetic mean which uses their sum).

Raises a StatisticsError if the input dataset is empty, if it contains a zero, or if it contains a negative value. The data may
be a sequence or iterable.

No special efforts are made to achieve exact results. (However, this may change in the future.)

New in version 3.8.

statistics.harmonic_mean(data, weights=None)
Return the harmonic mean of data, a sequence or iterable of real-valued numbers. If weights is omitted or None, then equal
weighting is assumed.

The harmonic mean is the reciprocal of the arithmetic mean() of the reciprocals of the data. For example, the harmonic mean
of three values a, b and c will be equivalent to 3/(1/a + 1/b + 1/c). If one of the values is zero, the result will be zero.

The harmonic mean is a type of average, a measure of the central location of the data. It is often appropriate when averaging
ratios or rates, for example speeds.

Suppose a car travels 10 km at 40 km/hr, then another 10 km at 60 km/hr. What is the average speed?

Suppose a car travels 40 km/hr for 5 km, and when traffic clears, speeds-up to 60 km/hr for the remaining 30 km of the jour-
ney. What is the average speed?

StatisticsError is raised if data is empty, any element is less than zero, or if the weighted sum isn’t positive.

The current algorithm has an early-out when it encounters a zero in the input. This means that the subsequent inputs are not
tested for validity. (This behavior may change in the future.)

New in version 3.6.

Changed in version 3.10: Added support for weights.

statistics.median(data)
Return the median (middle value) of numeric data, using the common “mean of middle two” method. If data is empty,
StatisticsError is raised. data can be a sequence or iterable.

The median is a robust measure of central location and is less affected by the presence of outliers. When the number of data
points is odd, the middle data point is returned:

When the number of data points is even, the median is interpolated by taking the average of the two middle values:

This is suited for when your data is discrete, and you don’t mind that the median may not be an actual data point.

If the data is ordinal (supports order operations) but not numeric (doesn’t support addition), consider using median_low() or
median_high() instead.

statistics.median_low(data)
Return the low median of numeric data. If data is empty, StatisticsError is raised. data can be a sequence or iterable.

The low median is always a member of the data set. When the number of data points is odd, the middle value is returned.
When it is even, the smaller of the two middle values is returned.

Use the low median when your data are discrete and you prefer the median to be an actual data point rather than interpolated.

statistics.median_high(data)
Return the high median of data. If data is empty, StatisticsError is raised. data can be a sequence or iterable.

The high median is always a member of the data set. When the number of data points is odd, the middle value is returned.
When it is even, the larger of the two middle values is returned.

Use the high median when your data are discrete and you prefer the median to be an actual data point rather than interpolat-
ed.

statistics.median_grouped(data, interval=1)
Return the median of grouped continuous data, calculated as the 50th percentile, using interpolation. If data is empty,
StatisticsError is raised. data can be a sequence or iterable.

In the following example, the data are rounded, so that each value represents the midpoint of data classes, e.g. 1 is the mid-
point of the class 0.5–1.5, 2 is the midpoint of 1.5–2.5, 3 is the midpoint of 2.5–3.5, etc. With the data given, the middle value
falls somewhere in the class 3.5–4.5, and interpolation is used to estimate it:

Optional argument interval represents the class interval, and defaults to 1. Changing the class interval naturally will change
the interpolation:

This function does not check whether the data points are at least interval apart.

CPython implementation detail: Under some circumstances, median_grouped() may coerce data points to floats. This be-
haviour is likely to change in the future.

See also:

“Statistics for the Behavioral Sciences”, Frederick J Gravetter and Larry B Wallnau (8th Edition).

The SSMEDIAN function in the Gnome Gnumeric spreadsheet, including this discussion.

statistics.mode(data)
Return the single most common data point from discrete or nominal data. The mode (when it exists) is the most typical value
and serves as a measure of central location.

If there are multiple modes with the same frequency, returns the first one encountered in the data. If the smallest or largest of
those is desired instead, use min(multimode(data)) or max(multimode(data)). If the input data is empty,
StatisticsError is raised.

mode assumes discrete data and returns a single value. This is the standard treatment of the mode as commonly taught in
schools:

The mode is unique in that it is the only statistic in this package that also applies to nominal (non-numeric) data:

Changed in version 3.8: Now handles multimodal datasets by returning the first mode encountered. Formerly, it raised
StatisticsError when more than one mode was found.

statistics.multimode(data)
Return a list of the most frequently occurring values in the order they were first encountered in the data. Will return more than
one result if there are multiple modes or an empty list if the data is empty:

New in version 3.8.

statistics.pstdev(data, mu=None)
Return the population standard deviation (the square root of the population variance). See pvariance() for arguments and
other details.

statistics.pvariance(data, mu=None)
Return the population variance of data, a non-empty sequence or iterable of real-valued numbers. Variance, or second mo-
ment about the mean, is a measure of the variability (spread or dispersion) of data. A large variance indicates that the data is
spread out; a small variance indicates it is clustered closely around the mean.

If the optional second argument mu is given, it is typically the mean of the data. It can also be used to compute the second
moment around a point that is not the mean. If it is missing or None (the default), the arithmetic mean is automatically calcu-
lated.

Use this function to calculate the variance from the entire population. To estimate the variance from a sample, the
variance() function is usually a better choice.

Raises StatisticsError if data is empty.

Examples:

If you have already calculated the mean of your data, you can pass it as the optional second argument mu to avoid recalcula-
tion:

Decimals and Fractions are supported:

Note: When called with the entire population, this gives the population variance σ². When called on a sample instead, this
is the biased sample variance s², also known as variance with N degrees of freedom.

If you somehow know the true population mean μ, you may use this function to calculate the variance of a sample, giving
the known population mean as the second argument. Provided the data points are a random sample of the population, the
result will be an unbiased estimate of the population variance.

statistics.stdev(data, xbar=None)
Return the sample standard deviation (the square root of the sample variance). See variance() for arguments and other de-
tails.

statistics.variance(data, xbar=None)
Return the sample variance of data, an iterable of at least two real-valued numbers. Variance, or second moment about the
mean, is a measure of the variability (spread or dispersion) of data. A large variance indicates that the data is spread out; a
small variance indicates it is clustered closely around the mean.

If the optional second argument xbar is given, it should be the mean of data. If it is missing or None (the default), the mean is
automatically calculated.

Use this function when your data is a sample from a population. To calculate the variance from the entire population, see
pvariance().

Raises StatisticsError if data has fewer than two values.

Examples:

If you have already calculated the mean of your data, you can pass it as the optional second argument xbar to avoid recalcula-
tion:

This function does not attempt to verify that you have passed the actual mean as xbar. Using arbitrary values for xbar can lead
to invalid or impossible results.

Decimal and Fraction values are supported:

Note: This is the sample variance s² with Bessel’s correction, also known as variance with N-1 degrees of freedom. Provid-
ed that the data points are representative (e.g. independent and identically distributed), the result should be an unbiased
estimate of the true population variance.

If you somehow know the actual population mean μ you should pass it to the pvariance() function as the mu parameter to
get the variance of a sample.

statistics.quantiles(data, *, n=4, method='exclusive')
Divide data into n continuous intervals with equal probability. Returns a list of n - 1 cut points separating the intervals.

Set n to 4 for quartiles (the default). Set n to 10 for deciles. Set n to 100 for percentiles which gives the 99 cuts points that
separate data into 100 equal sized groups. Raises StatisticsError if n is not least 1.

The data can be any iterable containing sample data. For meaningful results, the number of data points in data should be
larger than n. Raises StatisticsError if there are not at least two data points.

The cut points are linearly interpolated from the two nearest data points. For example, if a cut point falls one-third of the dis-
tance between two sample values, 100 and 112, the cut-point will evaluate to 104.

The method for computing quantiles can be varied depending on whether the data includes or excludes the lowest and high-
est possible values from the population.

The default method is “exclusive” and is used for data sampled from a population that can have more extreme values than
found in the samples. The portion of the population falling below the i-th of m sorted data points is computed as i / (m +
1). Given nine sample values, the method sorts them and assigns the following percentiles: 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90%.

Setting the method to “inclusive” is used for describing population data or for samples that are known to include the most ex-
treme values from the population. The minimum value in data is treated as the 0th percentile and the maximum value is treat-
ed as the 100th percentile. The portion of the population falling below the i-th of m sorted data points is computed as (i -
1) / (m - 1). Given 11 sample values, the method sorts them and assigns the following percentiles: 0%, 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90%, 100%.

New in version 3.8.

statistics.covariance(x, y, /)
Return the sample covariance of two inputs x and y. Covariance is a measure of the joint variability of two inputs.

Both inputs must be of the same length (no less than two), otherwise StatisticsError is raised.

Examples:

New in version 3.10.

statistics.correlation(x, y, /, *, method='linear')
Return the Pearson’s correlation coefficient for two inputs. Pearson’s correlation coefficient r takes values between -1 and +1.
It measures the strength and direction of a linear relationship.

If method is “ranked”, computes Spearman’s rank correlation coefficient for two inputs. The data is replaced by ranks. Ties are
averaged so that equal values receive the same rank. The resulting coefficient measures the strength of a monotonic relation-
ship.

Spearman’s correlation coefficient is appropriate for ordinal data or for continuous data that doesn’t meet the linear propor-
tion requirement for Pearson’s correlation coefficient.

Both inputs must be of the same length (no less than two), and need not to be constant, otherwise StatisticsError is
raised.

Example with Kepler’s laws of planetary motion:

New in version 3.10.

Changed in version 3.12: Added support for Spearman’s rank correlation coefficient.

statistics.linear_regression(x, y, /, *, proportional=False)
Return the slope and intercept of simple linear regression parameters estimated using ordinary least squares. Simple linear
regression describes the relationship between an independent variable x and a dependent variable y in terms of this linear
function:

y = slope * x + intercept + noise

where slope and intercept are the regression parameters that are estimated, and noise represents the variability of the
data that was not explained by the linear regression (it is equal to the difference between predicted and actual values of the
dependent variable).

Both inputs must be of the same length (no less than two), and the independent variable x cannot be constant; otherwise a
StatisticsError is raised.

For example, we can use the release dates of the Monty Python films to predict the cumulative number of Monty Python films
that would have been produced by 2019 assuming that they had kept the pace.

If proportional is true, the independent variable x and the dependent variable y are assumed to be directly proportional. The
data is fit to a line passing through the origin. Since the intercept will always be 0.0, the underlying linear function simplifies
to:

y = slope * x + noise

Continuing the example from correlation(), we look to see how well a model based on major planets can predict the orbital
distances for dwarf planets:

New in version 3.10.

Changed in version 3.11: Added support for proportional.

Exceptions

A single exception is defined:

exception statistics.StatisticsError
Subclass of ValueError for statistics-related exceptions.

NormalDist objects

NormalDist is a tool for creating and manipulating normal distributions of a random variable. It is a class that treats the mean and
standard deviation of data measurements as a single entity.

Normal distributions arise from the Central Limit Theorem and have a wide range of applications in statistics.

class statistics.NormalDist(mu=0.0, sigma=1.0)
Returns a new NormalDist object where mu represents the arithmetic mean and sigma represents the standard deviation.

If sigma is negative, raises StatisticsError.

mean
A read-only property for the arithmetic mean of a normal distribution.

median
A read-only property for the median of a normal distribution.

mode
A read-only property for the mode of a normal distribution.

stdev
A read-only property for the standard deviation of a normal distribution.

variance
A read-only property for the variance of a normal distribution. Equal to the square of the standard deviation.

classmethod from_samples(data)
Makes a normal distribution instance with mu and sigma parameters estimated from the data using fmean() and
stdev().

The data can be any iterable and should consist of values that can be converted to type float. If data does not contain at
least two elements, raises StatisticsError because it takes at least one point to estimate a central value and at least
two points to estimate dispersion.

samples(n, *, seed=None)
Generates n random samples for a given mean and standard deviation. Returns a list of float values.

If seed is given, creates a new instance of the underlying random number generator. This is useful for creating repro-
ducible results, even in a multi-threading context.

pdf(x)
Using a probability density function (pdf), compute the relative likelihood that a random variable X will be near the given
value x. Mathematically, it is the limit of the ratio P(x <= X < x+dx) / dx as dx approaches zero.

The relative likelihood is computed as the probability of a sample occurring in a narrow range divided by the width of the
range (hence the word “density”). Since the likelihood is relative to other points, its value can be greater than 1.0.

cdf(x)
Using a cumulative distribution function (cdf), compute the probability that a random variable X will be less than or equal
to x. Mathematically, it is written P(X <= x).

inv_cdf(p)
Compute the inverse cumulative distribution function, also known as the quantile function or the percent-point function.
Mathematically, it is written x : P(X <= x) = p.

Finds the value x of the random variable X such that the probability of the variable being less than or equal to that value
equals the given probability p.

overlap(other)
Measures the agreement between two normal probability distributions. Returns a value between 0.0 and 1.0 giving the
overlapping area for the two probability density functions.

quantiles(n=4)
Divide the normal distribution into n continuous intervals with equal probability. Returns a list of (n - 1) cut points sepa-
rating the intervals.

Set n to 4 for quartiles (the default). Set n to 10 for deciles. Set n to 100 for percentiles which gives the 99 cuts points that
separate the normal distribution into 100 equal sized groups.

zscore(x)
Compute the Standard Score describing x in terms of the number of standard deviations above or below the mean of the
normal distribution: (x - mean) / stdev.

New in version 3.9.

Instances of NormalDist support addition, subtraction, multiplication and division by a constant. These operations are used
for translation and scaling. For example:

Dividing a constant by an instance of NormalDist is not supported because the result wouldn’t be normally distributed.

Since normal distributions arise from additive effects of independent variables, it is possible to add and subtract two indepen-
dent normally distributed random variables represented as instances of NormalDist. For example:

New in version 3.8.

NormalDist Examples and Recipes
Classic probability problems

NormalDist readily solves classic probability problems.

For example, given historical data for SAT exams showing that scores are normally distributed with a mean of 1060 and a standard
deviation of 195, determine the percentage of students with test scores between 1100 and 1200, after rounding to the nearest
whole number:

Find the quartiles and deciles for the SAT scores:

Monte Carlo inputs for simulations

To estimate the distribution for a model than isn’t easy to solve analytically, NormalDist can generate input samples for a Monte
Carlo simulation:

Approximating binomial distributions

Normal distributions can be used to approximate Binomial distributions when the sample size is large and when the probability of
a successful trial is near 50%.

For example, an open source conference has 750 attendees and two rooms with a 500 person capacity. There is a talk about
Python and another about Ruby. In previous conferences, 65% of the attendees preferred to listen to Python talks. Assuming the
population preferences haven’t changed, what is the probability that the Python room will stay within its capacity limits?

Naive bayesian classifier

Normal distributions commonly arise in machine learning problems.

Wikipedia has a nice example of a Naive Bayesian Classifier. The challenge is to predict a person’s gender from measurements of
normally distributed features including height, weight, and foot size.

We’re given a training dataset with measurements for eight people. The measurements are assumed to be normally distributed, so
we summarize the data with NormalDist:

Next, we encounter a new person whose feature measurements are known but whose gender is unknown:

Starting with a 50% prior probability of being male or female, we compute the posterior as the prior times the product of likeli-
hoods for the feature measurements given the gender:

>>> from statistics import median
>>> from math import isnan
>>> from itertools import filterfalse

>>> data = [20.7, float('NaN'),19.2, 18.3, float('NaN'), 14.4]
>>> sorted(data) # This has surprising behavior
[20.7, nan, 14.4, 18.3, 19.2, nan]
>>> median(data) # This result is unexpected
16.35

>>> sum(map(isnan, data)) # Number of missing values
2
>>> clean = list(filterfalse(isnan, data)) # Strip NaN values
>>> clean
[20.7, 19.2, 18.3, 14.4]
>>> sorted(clean) # Sorting now works as expected
[14.4, 18.3, 19.2, 20.7]
>>> median(clean) # This result is now well defined
18.75

>>>

>>> mean([1, 2, 3, 4, 4])
2.8
>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625

>>> from fractions import Fraction as F
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
Fraction(13, 21)

>>> from decimal import Decimal as D
>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
Decimal('0.5625')

>>>

>>> fmean([3.5, 4.0, 5.25])
4.25

>>>

>>> grades = [85, 92, 83, 91]
>>> weights = [0.20, 0.20, 0.30, 0.30]
>>> fmean(grades, weights)
87.6

>>>

>>> round(geometric_mean([54, 24, 36]), 1)
36.0

>>>

>>> harmonic_mean([40, 60])
48.0

>>>

>>> harmonic_mean([40, 60], weights=[5, 30])
56.0

>>>

>>> median([1, 3, 5])
3

>>>

>>> median([1, 3, 5, 7])
4.0

>>>

>>> median_low([1, 3, 5])
3
>>> median_low([1, 3, 5, 7])
3

>>>

>>> median_high([1, 3, 5])
3
>>> median_high([1, 3, 5, 7])
5

>>>

>>> median_grouped([52, 52, 53, 54])
52.5

>>>

>>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
3.7

>>>

>>> median_grouped([1, 3, 3, 5, 7], interval=1)
3.25
>>> median_grouped([1, 3, 3, 5, 7], interval=2)
3.5

>>>

>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
3

>>>

>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
'red'

>>>

>>> multimode('aabbbbccddddeeffffgg')
['b', 'd', 'f']
>>> multimode('')
[]

>>>

>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
0.986893273527251

>>>

>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
>>> pvariance(data)
1.25

>>>

>>> mu = mean(data)
>>> pvariance(data, mu)
1.25

>>>

>>> from decimal import Decimal as D
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('24.815')

>>> from fractions import Fraction as F
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
Fraction(13, 72)

>>>

>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
1.0810874155219827

>>>

>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> variance(data)
1.3720238095238095

>>>

>>> m = mean(data)
>>> variance(data, m)
1.3720238095238095

>>>

>>> from decimal import Decimal as D
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('31.01875')

>>> from fractions import Fraction as F
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
Fraction(67, 108)

>>>

Decile cut points for empirically sampled data
>>> data = [105, 129, 87, 86, 111, 111, 89, 81, 108, 92, 110,
... 100, 75, 105, 103, 109, 76, 119, 99, 91, 103, 129,
... 106, 101, 84, 111, 74, 87, 86, 103, 103, 106, 86,
... 111, 75, 87, 102, 121, 111, 88, 89, 101, 106, 95,
... 103, 107, 101, 81, 109, 104]
>>> [round(q, 1) for q in quantiles(data, n=10)]
[81.0, 86.2, 89.0, 99.4, 102.5, 103.6, 106.0, 109.8, 111.0]

>>>

>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> covariance(x, y)
0.75
>>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> covariance(x, z)
-7.5
>>> covariance(z, x)
-7.5

>>>

>>> # Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune
>>> orbital_period = [88, 225, 365, 687, 4331, 10_756, 30_687, 60_190] # days
>>> dist_from_sun = [58, 108, 150, 228, 778, 1_400, 2_900, 4_500] # million km

>>> # Show that a perfect monotonic relationship exists
>>> correlation(orbital_period, dist_from_sun, method='ranked')
1.0

>>> # Observe that a linear relationship is imperfect
>>> round(correlation(orbital_period, dist_from_sun), 4)
0.9882

>>> # Demonstrate Kepler's third law: There is a linear correlation
>>> # between the square of the orbital period and the cube of the
>>> # distance from the sun.
>>> period_squared = [p * p for p in orbital_period]
>>> dist_cubed = [d * d * d for d in dist_from_sun]
>>> round(correlation(period_squared, dist_cubed), 4)
1.0

>>>

>>> year = [1971, 1975, 1979, 1982, 1983]
>>> films_total = [1, 2, 3, 4, 5]
>>> slope, intercept = linear_regression(year, films_total)
>>> round(slope * 2019 + intercept)
16

>>>

>>> model = linear_regression(period_squared, dist_cubed, proportional=True)
>>> slope = model.slope

>>> # Dwarf planets: Pluto, Eris, Makemake, Haumea, Ceres
>>> orbital_periods = [90_560, 204_199, 111_845, 103_410, 1_680] # days
>>> predicted_dist = [math.cbrt(slope * (p * p)) for p in orbital_periods]
>>> list(map(round, predicted_dist))
[5912, 10166, 6806, 6459, 414]

>>> [5_906, 10_152, 6_796, 6_450, 414] # actual distance in million km
[5906, 10152, 6796, 6450, 414]

>>>

>>> temperature_february = NormalDist(5, 2.5) # Celsius
>>> temperature_february * (9/5) + 32 # Fahrenheit
NormalDist(mu=41.0, sigma=4.5)

>>>

>>> birth_weights = NormalDist.from_samples([2.5, 3.1, 2.1, 2.4, 2.7, 3.5])
>>> drug_effects = NormalDist(0.4, 0.15)
>>> combined = birth_weights + drug_effects
>>> round(combined.mean, 1)
3.1
>>> round(combined.stdev, 1)
0.5

>>>

>>> sat = NormalDist(1060, 195)
>>> fraction = sat.cdf(1200 + 0.5) - sat.cdf(1100 - 0.5)
>>> round(fraction * 100.0, 1)
18.4

>>>

>>> list(map(round, sat.quantiles()))
[928, 1060, 1192]
>>> list(map(round, sat.quantiles(n=10)))
[810, 896, 958, 1011, 1060, 1109, 1162, 1224, 1310]

>>>

>>> def model(x, y, z):
... return (3*x + 7*x*y - 5*y) / (11 * z)
...
>>> n = 100_000
>>> X = NormalDist(10, 2.5).samples(n, seed=3652260728)
>>> Y = NormalDist(15, 1.75).samples(n, seed=4582495471)
>>> Z = NormalDist(50, 1.25).samples(n, seed=6582483453)
>>> quantiles(map(model, X, Y, Z))
[1.4591308524824727, 1.8035946855390597, 2.175091447274739]

>>>

>>> n = 750 # Sample size
>>> p = 0.65 # Preference for Python
>>> q = 1.0 - p # Preference for Ruby
>>> k = 500 # Room capacity

>>> # Approximation using the cumulative normal distribution
>>> from math import sqrt
>>> round(NormalDist(mu=n*p, sigma=sqrt(n*p*q)).cdf(k + 0.5), 4)
0.8402

>>> # Exact solution using the cumulative binomial distribution
>>> from math import comb, fsum
>>> round(fsum(comb(n, r) * p**r * q**(n-r) for r in range(k+1)), 4)
0.8402

>>> # Approximation using a simulation
>>> from random import seed, binomialvariate
>>> seed(8675309)
>>> mean(binomialvariate(n, p) <= k for i in range(10_000))
0.8406

>>>

>>> height_male = NormalDist.from_samples([6, 5.92, 5.58, 5.92])
>>> height_female = NormalDist.from_samples([5, 5.5, 5.42, 5.75])
>>> weight_male = NormalDist.from_samples([180, 190, 170, 165])
>>> weight_female = NormalDist.from_samples([100, 150, 130, 150])
>>> foot_size_male = NormalDist.from_samples([12, 11, 12, 10])
>>> foot_size_female = NormalDist.from_samples([6, 8, 7, 9])

>>>

>>> ht = 6.0 # height
>>> wt = 130 # weight
>>> fs = 8 # foot size

>>>

>>> prior_male = 0.5
>>> prior_female = 0.5
>>> posterior_male = (prior_male * height_male.pdf(ht) *

>>>

3.12.2 Quick search Go

https://github.com/python/cpython/tree/3.12/Lib/statistics.py
https://docs.python.org/3/library/numbers.html#numbers.Real
https://numpy.org/
https://scipy.org/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/fractions.html#fractions.Fraction
https://docs.python.org/3/library/functions.html#map
https://en.wikipedia.org/wiki/Outlier
https://en.wikipedia.org/wiki/Central_tendency
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://help.gnome.org/users/gnumeric/stable/gnumeric.html#gnumeric-function-SSMEDIAN
https://mail.gnome.org/archives/gnumeric-list/2011-April/msg00018.html
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Kepler's_laws_of_planetary_motion
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Monty_Python#Films
https://docs.python.org/3/library/exceptions.html#ValueError
http://www.stat.yale.edu/Courses/1997-98/101/ranvar.htm
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Mode_(statistics)
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Variance
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Quantile_function
https://web.archive.org/web/20190203145224/https://www.statisticshowto.datasciencecentral.com/inverse-distribution-function/
https://www.rasch.org/rmt/rmt101r.htm
https://www.statisticshowto.com/probability-and-statistics/z-score/
https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
https://nces.ed.gov/programs/digest/d17/tables/dt17_226.40.asp
https://en.wikipedia.org/wiki/Quartile
https://en.wikipedia.org/wiki/Decile
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://mathworld.wolfram.com/BinomialDistribution.html
https://en.wikipedia.org/wiki/Naive_Bayes_classifier#Person_classification
https://en.wikipedia.org/wiki/Prior_probability
https://www.python.org/

© Copyright 2001-2024, Python Software Foundation.
This page is licensed under the Python Software Foundation License Version 2.

Examples, recipes, and other code in the documentation are additionally licensed under the Zero Clause BSD License.
See History and License for more information.

The Python Software Foundation is a non-profit corporation. Please donate.

Last updated on Mar 18, 2024 (01:02 UTC). Found a bug?
Created using Sphinx 7.2.6.

The final prediction goes to the largest posterior. This is known as the maximum a posteriori or MAP:

Kernel density estimation

It is possible to estimate a continuous probability density function from a fixed number of discrete samples.

The basic idea is to smooth the data using a kernel function such as a normal distribution, triangular distribution, or uniform dis-
tribution. The degree of smoothing is controlled by a scaling parameter, h, which is called the bandwidth.

Wikipedia has an example where we can use the kde_normal() recipe to generate and plot a probability density function estimat-
ed from a small sample:

The points in xarr and yarr can be used to make a PDF plot:

>>> posterior_male = (prior_male * height_male.pdf(ht) *
... weight_male.pdf(wt) * foot_size_male.pdf(fs))

>>> posterior_female = (prior_female * height_female.pdf(ht) *
... weight_female.pdf(wt) * foot_size_female.pdf(fs))

>>> 'male' if posterior_male > posterior_female else 'female'
'female'

>>>

def kde_normal(sample, h):
 "Create a continuous probability density function from a sample."
 # Smooth the sample with a normal distribution kernel scaled by h.
 kernel_h = NormalDist(0.0, h).pdf
 n = len(sample)
 def pdf(x):
 return sum(kernel_h(x - x_i) for x_i in sample) / n
 return pdf

>>> sample = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
>>> f_hat = kde_normal(sample, h=1.5)
>>> xarr = [i/100 for i in range(-750, 1100)]
>>> yarr = [f_hat(x) for x in xarr]

>>>

https://docs.python.org/3/copyright.html
https://docs.python.org/license.html
https://www.python.org/psf/donations/
https://docs.python.org/bugs.html
https://www.sphinx-doc.org/
https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation
https://en.wikipedia.org/wiki/Kernel_(statistics)#Kernel_functions_in_common_use
https://en.wikipedia.org/wiki/Kernel_density_estimation#Example

